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Abstract

To what extent can language acquisition be explained in terms of different associative learning mechanisms? It has been
hypothesized that distributional regularities in spoken languages are strong enough to elicit statistical learning about
dependencies among speech units. Distributional regularities could be a useful cue for word learning even without rich language-
specific knowledge. However, it is not clear how strong and reliable the distributional cues are that humans might use to segment
speech. We investigate cross-linguistic viability of different statistical learning strategies by analyzing child-directed speech
corpora from nine languages and by modeling possible statistics-based speech segmentations. We show that languages vary as to
which statistical segmentation strategies are most successful. The variability of the results can be partially explained by
systematic differences between languages, such as rhythmical differences. The results confirm previous findings that different
statistical learning strategies are successful in different languages and suggest that infants may have to primarily rely on non-
statistical cues when they begin their process of speech segmentation.

Research highlights

• Although infants can use distributional regularities to
start segmenting words from fluent speech, co-
occurrence statistics are not equally informative in
all languages.

• A possible source of statistical variance between
languages is linguistic rhythm.

• Infants may use the language-specific information
about rhythm to narrow down possible associative
strategies to segment speech.

Introduction

When presented with a continuous stream of syllables,
many animals, among them humans (adults and infants),
non-human primates, and rodents, show a striking
ability: they are able to group sequences of syllables
with higher statistical coherence and delimit them from
sequences with lower statistical coherence (Hauser,

Newport & Aslin, 2001; Saffran, Aslin & Newport,
1996a; Toro & Trobal�on, 2005). While this ability is not
limited to speech but can be used to delimit coherent
sequences also in non-linguistic auditory, visual, or
cross-modal stimuli (Fiser & Aslin, 2002; Fiser, Scholl
& Aslin, 2007; Kirkham, Slemmer & Johnson, 2002;
Saffran, Johnson, Aslin & Newport, 1999), humans may
use this ability predominantly for segmenting words
from continuous speech. Across languages, syllable pairs
with higher statistical coherence tend to belong to the
same word (Harris, 1955; Hayes & Clark, 1970).
Language learners could therefore use this information
to segment syllable sequences that are more likely to
constitute words in a given language. Word segmentation
using these general associative learning mechanisms
should be particularly useful when language-specific
knowledge is degraded, unfamiliar or absent altogether.
In fact, some experiments have suggested that very
young infants rely more on the statistical rather than on
the language-specific cues (i.e. lexical stress) when they
collide, whereas later on this preference may weaken
(Thiessen & Saffran, 2003, 2007).
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Numerous computational models have tried to iden-
tify the most probable learning strategy that might
account for the observed behavior. One possibility is that
humans are able to chunk the input into coherent
sequences because they sometimes occur in isolation and
because they occur frequently enough; these strategies
are explored by a family of lexical and chunking models
that build their predictions on various aspects of
frequency detection (Goldwater, Griffiths & Johnson,
2009; Hewlett & Cohen, 2011; Perruchet & Vinter, 1998).
A surprisingly strong sensitivity to frequency informa-
tion has also been found experimentally, in French
infants (Ngon, Martin, Dupoux, Cabrol, Dutat et al.,
2013). Another option is that humans cluster the most
coherent sequences into word candidates on the basis of
both frequency and co-occurrence probability; a version
of this model that used mutual information as a co-
occurrence measure could partially explain how infants
start to segment the most common type of words in
English and Dutch (Swingley, 2005). And finally, one of
the first and most prominent models that attempted to
explain this human behavior suggested that infants and
adults compute primarily transitional (conditional)
probabilities among adjacent syllables (Saffran et al.,
1996a; Saffran, Newport & Aslin, 1996b). Indeed, if they
cannot use frequency information, infants appear to rely
on transitional probabilities between syllables (Aslin,
Saffran & Newport, 1998).
A recent study that modeled human experimental data

on speech segmentation with the above presented models
suggested that human performance is most successfully
represented by a version of the lexical chunking models,
and almost equally successfully by a transitional prob-
ability model that uses an absolute transitional proba-
bility threshold to determine word candidates (Frank,
Goldwater, Griffiths & Tenenbaum, 2010). This leaves a
certain degree of uncertainty about the type of compu-
tations humans are using for segmenting speech when
only statistical cues are present. The uncertainty remains
equally present if we focus on the complementary
question: How successful is each of these lines of models
in segmenting natural speech? Natural speech is very
different from the stimuli presented in most of the
experiments: it contains numerous words of different
lengths, and the same syllables can co-occur with many
different syllables also within words, yielding overall
lower statistical coherency. Both lexical chunking models
and models based on co-occurrence probabilities have
been used to segment natural speech corpora (Batch-
elder, 2002; Boruta & Peperkamp, 2011; Fourtassi,
Orschinger, Dupoux & Johnson, 2013; Gambell & Yang,
2006; Gervain & Guevara Erra, 2012; Hewlett & Cohen,
2011; Jarosz & Johnson, 2013; Johnson & Demuth, 2010;

Johnson, 2008; Monaghan, Chater & Christiansen, 2005;
Yang, 2004). For each type of model, various languages
have been tested, and the common conclusion is that
there are substantial cross-linguistic differences, no
matter which type of model is used (Fourtassi et al.,
2013; Jarosz & Johnson, 2013). To account for these
cross-linguistic differences, some explanations have been
proposed: the differences in statistical segmentations
could be related either to the differences in morpho-
syntactic features (Gervain & Guevara Erra, 2012; Onnis
& Thiessen, 2013), or to a general segmentation ambi-
guity, linked to a trade-off between syllabic complexity
and word length (Fourtassi et al., 2013). However, none
of the studies analyzes numerous languages using exactly
the same methodology. Furthermore, not many lan-
guages are analyzed in total. Therefore, two questions
remain largely unanswered: (1) Does the variability of
the results stem from some systematic differences across
languages? If so, what are the probable accounts? (2)
What do these differences mean for a language learner,
i.e. how does a potential language learner select the most
efficient among all the possible segmentation strategies,
and what is the relationship between language-dependent
and universal associative cues for learning?
To answer the first question and possibly address the

second one, we analyzed transcribed child-directed
corpora from nine different languages (English, Polish,
Dutch, Italian, Spanish, Hungarian, Estonian, Japanese,
Tamil). Because of their relative simplicity and their
prominence in infant studies, we limited ourselves to the
models based on co-occurrence probabilities. There are
broadly two types of such models. One model segments
speech by posing a boundary where transitional or co-
occurrence probabilities are locally lowest (relative
thresholding) (Saffran et al., 1996a). By definition, such
a segmentation strategy implies that listeners only find
the words that are longer than one syllable (Yang, 2004).
In the alternative model, words can be segmented by
extracting the syllable sequences with transitional prob-
abilities higher than a certain absolute level of co-
occurrence probability (absolute thresholding) (Gervain
& Guevara Erra, 2012; Swingley, 2005). We used both
versions, and in each of them we explored the informa-
tion provided by different syllable-based distributional
probabilities (forward and backward transitional prob-
abilities, their combination, and mutual exclusivity). For
each model and for each distributional cue, we computed
the success rate in segmenting words in each language.
To verify the hypothesis that different success rates in
segmenting words using co-occurrence statistics may
reflect cross-linguistic variation in morpho-syntactic and
phonological properties, we compared some of these
properties to the obtained results. These properties could
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either define which statistical information is to be used,
or could possibly serve as a cue to segment words that is
more reliable than statistical cues.

Methods

Corpora

We analyzed the transcribed spoken corpora in nine
different languages from the CHILDES database
(MacWhinney, 2000): Estonian (Argus, 2004; Kohler,
2004; Korgesaar, 2011; Vija, 2004), Hungarian (Gervain
& Guevara Erra, 2012), Japanese (Ishii, 1999; Oshima-
Takane, MacWhinney, Sirai, Miyata & Naka, 1998; Ota,
2003), Tamil (Narasimhan, 2004), Italian (Antelmi,
2004; Antinucci & Parisi, 1973; Tonelli, 2004; Volterra,
1976), Spanish (Goga, 2006; Jackson-Maldonado &
Thal, 1994; Vila, 1990), Dutch (Bol, 1995; Van Kampen,
1994; Wijnen, 1992), Polish (Smoczynska, 1985; Weist &
Witkowska-Stadnik, 1986), and English (Korman, 1984;
Swingley, 2005). We chose languages that belong to
different linguistic families (Slavic, Romance, Germanic,
Finno-Ugric, Dravidian, Japonic) and differed in a
number of grammatical features, such as word order,
morpho-syntactic complexity, and phonological features
(Dryer & Haspelmath, 2011). The choice of the lan-
guages was determined by the availability of the child-
directed corpora and the availability of native speakers
who segmented the corpora into syllabic sequences. In
each corpus, only the child-directed sentences spoken by
adults were taken into account. Phonetic transcription
was used wherever the spelling differed from the ortho-
graphic transcription. The syllabified corpora used for
the analysis are available from the authors upon request.

In order to ensure that we were analyzing a compa-
rable amount of data, we selected 3300 sentences for each
language. Although the size of the corpora typically does
not significantly change the co-occurrence statistics
(Gambell & Yang, 2006), the relatively small sizes of
the corpora could affect the results of the segmentation
process. We compared the results in our study to the
results using the larger amount of input data in the
following languages in which larger corpora were avail-
able: Hungarian and Italian available from CHILDES
database (Gervain & Guevara Erra, 2012; http://child-
es.psy.cmu.edu/derived/; 15,200 and 10,470 sentences
each), and the syllabified corpora of Dutch (Swingley,
2005; van de Weijer, 1998; 10,700 sentences) and English
(Korman, 1984; Swingley, 2005, 12,800 sentences), can
be obtained by request from the author. The segmenta-
tion results with larger corpora are presented in the
Supplementary Material.

Dependency measures

We analyzed adjacent dependencies (forward transitional
probabilities (FTP), backward transitional probabilities
(BTP), and mutual information (MI)) among the sylla-
bles in our corpora. The dependencies were computed as
follows:

FTP(XY) ¼ frequency(XY)=frequency(X)

BTP(XY) ¼ frequency(XY)=frequency(Y)

MI(XY) ¼ log2(frequency(XY)=(frequency(X)

� frequency(Y)))

Adjacent transitional probability is the conditional
probability statistic that measures how predictive adja-
cent elements are. It is the main statistical measure in
various word segmentation models (Aslin et al., 1998;
Frank et al., 2010; Tyler & Cutler, 2009). Both adults
and infants can use both forward and backward transi-
tional probabilities, and while the preference for using
one of the two measures grows with the language
experience, it is unclear whether infants rely more on
one or the other measure or both (Onnis & Thiessen,
2013; Pelucchi, Hay & Saffran, 2009). We therefore also
computed the logically possible combination of the two
measures (FTP&BTP) (Gervain & Guevara Erra, 2012).
For the combined FTP&BTP measure, both the FTP
and the BTP values had to reach the segmentation
criterion for a word boundary to be posited. Mutual
information is a symmetrical measure, similar to transi-
tional probabilities. It has been used to measure the
strength of associations between words in written
corpora and is now used in many corpora for extracting
frequently co-occurring word pairs (Church & Hanks,
1990; Hayes & Clark, 1970; Mihalcea, Corley & Strap-
parava, 2006). Recently, mutual information has also
been used to model the word segmentation process
(Huang, 2012; Swingley, 2005). This measure is usually
not normalized and its range varies in different corpora.

The languages we chose differ significantly in a
number of quantitative features, such as average word
and utterance length and syllabic diversity. In all
languages, co-occurrence statistics are stronger within
words and weaker at word boundaries: average values in
all dependencies measures are lower in the across-word
syllable pairs and higher in the within-word syllable pairs
(Table 1). This confirms the findings of previous studies
where TP drops at word boundaries were observed
(Gervain & Guevara Erra, 2012; Harris, 1955; Hayes &
Clark, 1970).

Non-adjacent dependencies were not measured
because in our corpora the proportion of words con-
taining more than two syllables is relatively low. Fur-
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thermore, infants appear to disregard non-adjacent
dependencies when the adjacent ones are high (Gomez,
2002; Gomez & Maye, 2005). Although smaller and
larger constituents are sometimes considered as well
(Batchelder, 2002; Bonatti, Pe~na, Nespor & Mehler,
2007; Brent & Cartwright, 1996; Monaghan et al., 2005),
syllable has been predominantly recognized as a minimal
perceptual unit in speech and has therefore been used as
a minimal input unit also in models of infant speech
segmentation (Bertoncini, Floccia, Nazzi & Mehler,
1995; Gambell & Yang, 2006; Mehler, 1981; Saffran
et al., 1996a; Swingley, 2005). Furthermore, in the study
of Gervain and Guevara-Erra, the segmentation algo-
rithms based on co-occurrence probabilities performed
significantly worse when computed over phonemes than
over syllables both in Hungarian and Italian (Gervain &
Guevara Erra, 2012). We therefore used adjacent depen-
dencies among syllables in our study.

Segmentation algorithms

In each of the corpora we used two segmentation
algorithms to determine possible word boundaries, both
using only the dependency measures described above. In
the first algorithm (Relative), the boundaries are set
wherever the dependency measure value P (FTP, BTP,
FTP&BTP, or MI) of a syllable pair (XY) is weaker than
in the neighboring ones (ZX and YW), defined as:

P(ZX)[P(XY)\P(YW)

For the second model we used an algorithm that looks
for drops in TP or MI values below a certain general
threshold, setting the word boundary whenever the
values are lower than the threshold and extracting the
words that contain syllable pairs with co-occurrence

probabilities higher than the threshold (Absolute algo-
rithm). Although in principle many different thresholds
can be used for delimiting words in the stream (Gervain
& Guevara Erra, 2012; Swingley, 2005), it is highly
improbable that any real language learner would repeat-
edly segment word candidates from the input using many
different thresholds and then select the threshold that
gives the best result. We therefore took the average values
of syllable pairs – computed separately for each depen-
dency measure in each language – as suitable absolute
thresholds. To verify that the average FTP, BTP,
FTB&BTP, and MI are valid candidates for thresholds,
we compared the result obtained by using a threshold
that gave the best results among 100 percentile thresh-
olds (Gervain & Guevara Erra, 2012) to the result
obtained using the average values as an absolute thresh-
old in each language. We found no significant difference
(GLM with within-language factors Threshold and
Measure showed significant effect of Measure (F(3) =
9.859, p = .000) and no effect of Threshold (F(1) = 0.116,
p = .742), with significant interaction between the two
factors (F(3) = 14.898, p = .000), reflecting much bigger
differences between the results with the two thresholds in
the FTP&BTP measure). The results using 100 percentile
thresholds in both algorithms using all three measures
are presented in the Supplementary Material (Figure S1).

Evaluation measures

We evaluate each segmentation strategy using the con-
ventional information retrieval measures (Baeza-Yates &
Ribeiro-Neto, 1999): Precision, Recall, and their har-
monic mean, F-score, as defined in:

Precision ¼ #hits=ð#hitsþ#false alarmsÞ

Table 1 Quantitative features of the analyzed corpora. We use the standard corpus terminology, where type means a unique string
in the corpus (regardless of its frequency), and token means any string (regardless of its uniqueness)

English Polish Dutch Spanish Italian Hungarian Estonian Japanese Tamil

Words 9196 16529 14475 14710 15777 12669 14590 9621 9226
Words/utterance 3.787 5.008 4.387 4.456 4.780 3.839 4.422 2.936 2.795
Syllables/word 1.159 1.740 1.275 1.670 1.830 1.700 1.690 2.330 2.340
Syllables types 993 1137 1049 764 788 1718 1289 371 1108
Bigrams types 7720 8936 8200 7474 7852 10807 10710 3956 7108
Bigrams tokens 11703 28738 18467 24571 28882 21492 24649 23029 21612
Word order SVO SVO SVO SVO SVO SOV SVO SOV SOV
Proportion of syllabic
intervals (%V)

40.1 41 42.3 43.8 45.2 48.2 53.2 53.3

Mean word-internal FTP 0.493 0.145 0.387 0.181 0.242 0.228 0.233 0.141 0.262
Mean word-straddling FTP 0.156 0.126 0.114 0.092 0.041 0.153 0.096 0.056 0.109
Mean word-internal BTP 0.477 0.259 0.321 0.233 0.133 0.323 0.186 0.101 0.222
Mean word-straddling BTP 0.158 0.080 0.126 0.072 0.093 0.108 0.112 0.088 0.141
Mean word-internal MI �5.295 �10.691 �7.057 �10.194 �10.979 �7.454 �9.520 �12.881 �8.954
Mean word-straddling MI �10.196 �12.554 �11.271 �12.674 �13.196 �11.057 �11.578 �14.063 �11.717
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Recall ¼ #hits=ð#hitsþ#missesÞ
F ¼ ð2 � precision � recallÞ=ðprecisionþ recallÞ

Whenever the proportion of hits is substantially lower
than the proportion of falsely selected or missed words
(when either precision or recall are lower than 35%), the
F-score will be lower than 0.5.

Procedure

In each corpus, we first measured the dependencies
(FTP, BTP, FTP&BTP, MI) among syllables within
words and at word boundaries. In a second step, the
information about the word boundaries was
removed and only the utterance boundaries remained.
Utterances in child-directed speech corpora in
CHILDES are delimited either by pauses or by
another person’s utterances. In both cases a word
boundary is indicated without any doubt. Further-
more, infants are sensitive to utterance boundaries and
can make use of them (Jusczyk, 1999). We therefore
kept the utterance boundaries as unambiguous word
boundary information. Each of the segmentation
algorithms produced a distinct set of word candidates
in each language. These word candidates were com-
pared to the actual words in the same corpus. The
input for learning (measuring the dependencies) and
modeling the word segmentation was the same because
we wanted to directly compare the actual words and
the word candidates produced by the models in each
corpus. The scripts (in Python) that were used during
the whole procedure are available upon the request
from the authors.

Results

Overall differences

In all languages and in both algorithms, overall segmen-
tation results are relatively high, spanning from 0.49 to
0.86 (Figure 1). (The table with Recall, Precision, and F-
scores can be found in the Supplementary Material,
Tables S1 and S2.) However, languages that perform best
in one algorithm tend to have the lowest results in the
other algorithm. Overall differences between languages
could therefore only be assessed if the results from each
algorithm are observed separately. Post-hoc comparisons
of one-way analysis of variance between the results in the
nine languages in Absolute algorithm (F(8) = 10.110,
p < .001) show significant differences between Dutch
and English on the one side and Estonian, Japanese, and
Tamil on the other side. In the Relative algorithm,
differences are smaller and significant only between
Tamil on the one hand and English and Dutch, on the
other hand (F(8) = 3.130, p = .012). The results are
overall significantly higher with the Absolute algorithm
than with the Relative algorithm. The differences
between the results when different dependency measures
are taken are somewhat smaller, the biggest being when
FTP&BTP were measured. The general linear model
(GLM) of variance between the F-scores in each
algorithm and all four measures – with within-language
factors Measure and Algorithm, and Language as a
covariate – shows significant effect of Algorithm (F(1) =
16.370; p = .005), and of Measure (F(3) = 4.418;
p = .015), with no interaction between the factors (F(3)
= 0.805, p = .505) (Figure 2).

Figure 1 The F-scores in each algorithm for all measures across languages. The languages are ordered according to their average
proportions of vocalic intervals: English is a stress-timed language with the lowest proportion, while Tamil a mora-timed language
with the highest proportion of vocalic intervals.

© 2016 John Wiley & Sons Ltd

The rhythm of speech statistics 5



Cross-linguistic differences

Although the results are overall high, there are substan-
tial differences among languages in each algorithm, and
the goal of this article is to assess the possible sources of
these differences. One possibility is that the cross-
linguistic variation in segmentation success lies in
morpho-syntactic differences between the languages
analyzed: In head-initial languages with a default sub-
ject-verb-object (SVO) word order, such as English or
Italian, the head of a phrase precedes its complements
and therefore forward TPs could be more informative
than backward TPs. Conversely, in head-final languages
with a default subject-object-verb (SOV) word order,
thus with the head of a phrase following its comple-
ments, BTPs could be more informative (Gervain &
Guevara Erra, 2012; Onnis & Thiessen, 2013). However,
our language samples cannot confirm this hypothesis.
BTPs are more informative only in Polish and Spanish,
which are head-initial languages with a default SVO
order, and in Hungarian (which is a head-final language,

as predicted by the hypothesis), whereas in other two
head-final languages in our sample, Japanese and Tamil,
FTPs and MI are more informative. If we add Word
order as the between-language factor to the general
linear model with the factors Measure and Algorithm,
we find no interaction between Word order and the
factor Measure. Furthermore, Word order is not a
significant predictor of the results with any of the
measures (see correlations in Table 2). In our sample of
languages, word order therefore cannot serve as a
predictor of which dependency measure is more infor-
mative.
Another possibility is that segmentation differences

stem from phonological differences and are linked to
syllable complexity and word length (Fourtassi et al.,
2013). Both features are closely related to linguistic
rhythm – a feature that is perceptually salient both for
infant and adult language learners (Bolger, Trost &
Sch€on, 2013; Ramus, Hauser, Miller, Morris & Mehler,
2000; Werker & Vouloumanos, 2000). Human languages
vary significantly regarding their basic rhythm. Some
have a more regular, machine gun-like rhythm, as in
Spanish, and they are classified as syllable-timed. In
others, the basic rhythm is less regular, yielding a Morse
code-like rhythm, as in English, and they are classified as
stress-timed. A third type of language, typically Japa-
nese, appears to be isochronous sub-syllabically, and
they are classified as mora-timed (Mehler & Nespor,
2004). Linguistic rhythm strongly correlates to average
word length (words in stress-timed languages are shorter
than in mora-timed languages) and to average syllabic
complexity (most complex syllables are only possible in
stress-timed languages). But recent studies have shown
that linguistic rhythm can be most accurately quantified
if the average proportion of vocalic intervals is measured
(Nespor, Shukla & Mehler, 2011; Ramus, Nespor &
Mehler, 1999). In stress-timed languages, the average
proportion of vocalic intervals is the lowest, and in
mora-timed languages it is the highest. We compared the

Figure 2 Means of F-scores in the nine languages in the two
algorithms with dependency measures used in the analysis.
Error bars represent standard deviation. The differences
between the results when using different measures are not
significant within each algorithm, but there is an overall
difference between the two algorithms.

Table 2 The bivariate correlations between the results in each segmentation model and the relevant features of the languages
analyzed

Pearson’s
correlations

Word length
(syll)

Vocalic
proportions

Absolute algorithm Relative algorithm

FTP BTP FTP& BTP MI FTP BTP
FTP&
BTP MI

Word order rho 0.704 0.905 �0.643 �0.499 �0.584 �0.542 0.315 0.31 0.639 0.512
sig 0.034 0.002 0.062 0.172 0.098 0.132 0.409 0.417 0.064 0.158

Word length
(syllables)

rho 0.888 �0.718 �0.824 �0.695 �0.856 0.691 0.314 0.874 0.929
sig 0.003 0.03 0.006 0.038 0.003 0.039 0.41 0.002 0

Vocalic
proportions

rho �0.656 �0.811 �0.731 �0.818 0.737 0.193 0.842 0.73
sig 0.078 0.015 0.04 0.013 0.037 0.647 0.009 0.04
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results in the languages analyzed to the average word
length – measured in the same corpora – and to the
average proportions of vocalic intervals – measured on
independent adult-directed corpora (Nespor et al., 2011;
Ramus et al., 1999). The measurements exist for all
languages analyzed except Estonian, so the following
analyses are carried out without Estonian data on
rhythm.

The results from the two algorithms correlate both
with word length and with rhythm measurements
(Table 2). The segmentation with the Absolute algo-
rithm in all dependency measures is negatively corre-
lated to the proportion of vocalic intervals (R2 <
�0.689, p < .078) as well as to the average word length
(R2 < �0.695, p < .038). The word segmentation results
with the Relative algorithm are, conversely, positively
correlated to the proportion of vocalic intervals (R2 >
0.730, p < .040 for results with FTP, FTP&BTP and MI
measures, whereas for BTP, the correlation is non-
significant) and to the average word length (R2 > 0.691,
p < .039 for results with FTP, FTP&BTP and MI
measures and non-significantly for BTP). To assess the
relative contribution of word order and average vocalic
intervals as possible predictors for segmentation results,
we ran multiple regression analysis. The results show
that the models are overall less significant in predicting
segmentation results when both word length and
average vocalic intervals are included. However, for
most of the results, word length is a slightly better
predictor of the more successful segmentation strategy
than the average vocalic proportions (Table 3). The
variation in statistical segmentation could therefore be
most effectively explained by the average word length,
and also by a more general measure of linguistic
rhythm.

Discussion

The first aim of this study was to examine how
informative co-occurrence statistics is for segmenting
words from the unsegmented input in various languages.
The observations are the following: (1) Our results are
relatively high (Yang, 2004); in all languages and in all
measures the F-scores are higher than 0.49. The only
additional information to the co-occurrence statistics in
our model consisted of utterance boundaries: because
they represent long pauses or changes of speaker, they
are unambiguously informative about the word bound-
ary. This information has significantly increased the
proportion of correct word candidates (see Supplemen-
tary Material for the results without utterance bound-
aries). (2) Our results confirm previous findings that
using an invariable (absolute) threshold is in general
more efficient than finding locally minimal values of
chosen segmentation measures (Frank et al., 2010;
Gervain & Guevara Erra, 2012). (3) Different co-
occurrence measures (forward transitional probabilities,
backward transitional probabilities, and mutual infor-
mation) affect the results of word segmentation in the
two algorithms, but the differences between the results in
different measures are smaller than between different
algorithms (Figure 2). The combined FTP&BTP mea-
sure gives worse results than the separate FTP and BTP
measures, especially in the Relative algorithm. This
leaves open the question of the usability of such
combination (Gervain & Guevara Erra, 2012).

The second aim of our study was to account for the
cross-linguistic differences that we found and that
confirm previous observations about substantial differ-
ences among languages, even when the same or a similar
segmentation algorithm is used (Batchelder, 2002; Four-

Table 3 Multiple linear regression analyses of the relative contribution of Word length and Average vocalic intervals in predicting
word segmentation results using Absolute and Relative algorithms with the four dependency measures. The predictor variables were
entered simultaneously into the model

Model

FTP BTP FTP&BTP MI

St. coeff.
Beta t Sig.

St. coeff.
Beta. t Sig.

St. coeff.
Beta t Sig.

St. coeff.
Beta t Sig.

Absolute algorithm
(Constant) 3.619 0.015 5.347 0.003 7.93 0.001 12.072 0
Word length �0.694 �1.039 0.346 �0.775 �1.713 0.147 �0.566 �0.92 0.4 �0.945 �2.567 0.05
Average vocalic
intervals

�0.039 �0.059 0.955 �0.122 �0.271 0.797 �0.228 �0.37 0.727 0.021 0.057 0.956

Relative algorithm
(Constant) 2.141 0.085 2.939 0.032 0.87 0.424 2.998 0.03
Word length 0.344 0.538 0.614 0.658 0.723 0.502 0.597 1.319 0.244 1.332 4.493 0.006
Average vocalic
intervals

0.432 0.675 0.53 �0.392 �0.431 0.685 0.311 0.687 0.523 �0.453 �1.529 0.187
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tassi et al., 2013; Gervain & Guevara Erra, 2012; Jarosz
& Johnson, 2013; Johnson & Demuth, 2010; Johnson,
2008; Yang, 2004). One of the proposals was that the
main morpho-syntactic differences are the cause of the
differences in co-occurrence statistics: forward transi-
tional probabilities might be more informative in lan-
guages with head-initial phrase structure and the default
SVO word order, whereas backward transitional proba-
bilities are more informative in head-final languages with
SOV word order (Gervain & Guevara Erra, 2012; Onnis
& Thiessen, 2013). In our study, however, we could not
find any systematic differences among the results in the
languages when we divided them based on their basic
word order.
The second proposal is that the differences among

languages are relative to some of their intrinsic prop-
erties, such as average word length and syllabic com-
plexity (Fourtassi et al., 2013). Both features are
strongly correlated to linguistic rhythm. We therefore
ran multiple regressions between average word length,
the average vocalic proportion, which is the most
reliable indicator of linguistic rhythm (Nespor et al.,
2011; Ramus et al., 1999), and the results in both
algorithms. The results showed that vocalic proportions
are significant predictors of the results in both algo-
rithms, such that the Absolute algorithm will be most
successful in stress-timed languages, and the Relative
algorithm will be more successful in mora-timed
languages. Although word length appears to be an
even stronger predictor of the results, there are two
points to be noted here: we took average word length
directly from the corpora that we analyzed, whereas
average vocalic proportions are taken from an indepen-
dent analysis of adult-directed speech corpora. It is thus
difficult to estimate a real relative contribution of the
two. Second, even if word length is a better predictor of
the most successful segmentation strategy, the question
remains whether language learners could take advan-
tage of the average word length as a cue. In fact, in
order to compute average word length in their language,
they would need to have at least an initial list of words
already segmented.
If, conversely, rhythm is a good predictor of the type

of segmentation strategy that will be successful in each
language, what can that mean for a language learner? It
is known that experience with language changes the
strategies for segmenting words. Adult speakers are
sensitive to different types of co-occurrence statistics in
different languages (Onnis & Thiessen, 2013); the most
prominent stress pattern in the native language alters
segmentation preferences (Jusczyk, Cutler & Redanz,
1993; Jusczyk, Houston & Newsome, 1999); native
language phonotactics can serve as a constraint for

segmentation (Johnson, Jusczyk, Cutler & Norris, 2003;
Johnson & Jusczyk, 2001; Mersad & Nazzi, 2011). But
because infants are born without such rich knowledge
about their native language, statistical information was
proposed as a bootstrapping mechanism to start
segmentation (Saffran et al., 1996a; Swingley, 2005;
Thiessen & Saffran, 2003). The results of our study
indicate a strong correlation between distribution-based
segmentation strategies and linguistic rhythm, which
offers another hypothesis: rhythmical information both
narrows down possible lexical structures and offers
information about which type of statistics is more
informative. The fact that humans are sensitive to
rhythmical information from birth on (Ramus et al.,
2000) and that infants’ segmentation is strongly influ-
enced by the rhythmical properties of their native
language (Mersad, Goyet & Nazzi, 2010; Nazzi, Iaki-
mova, Bertoncini & Alcantara, 2006; Nishibayashi,
Goyet & Nazzi, 2015) gives further support to this
hypothesis. Furthermore, the possibility that rhythmical
information determines which type of statistical seg-
mentation is more informative is consistent with recent
studies that have explored the interaction between
domain-general and language-specific learning mecha-
nisms during early language development: perceptual
primitives and general learning mechanisms that play
an important role in language development, such as
frequency detection, sensitivity to edges, and the
process of generalization, are constrained by universal
properties of language (Endress & Hauser, 2009;
Gervain, Nespor, Mazuka, Horie & Mehler, 2008;
Hochmann, Endress & Mehler, 2010; Lidz, Waxman
& Freedman, 2003). Word segmentation based on co-
occurrence statistics could therefore be another general
learning mechanism constrained by language-specific
knowledge. There are, however, several questions that
remain open in the present study. While this study is
based on the input that infants receive during their
language development, further experimental work is
needed to establish whether infants indeed employ
different segmentation strategies based on the rhythmi-
cal properties of their native language. Furthermore, we
have only tested the two models that are based on
probabilistic measures of distributional dependencies
among adjacent syllables. While this is beyond the
scope of the present study, the presented hypothesis,
according to which a language-specific non-statistical
property (such as linguistic rhythm) can predict seg-
mentation success, could be tested with other segmen-
tation models. This would shed additional light on the
issue of the interaction between language-specific
phonological properties and more general statistical
properties of languages.

© 2016 John Wiley & Sons Ltd
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tion algorithm using one of the 100-percentile values.
Table S1. Recall, Precision, and F-scores in Absolute

algorithm for forward (FTP), backward TPs (BTP), a combi-
nation (FTP&BTP), and mutual information (MI).
Table S2. Recall, Precision, and F-scores in Relative algo-

rithm for forward (FTP), backward TPs (BTP), a combination
(FTP&BTP), and mutual information (MI).
Table S3. Results without utterance boundaries.
Table S4. Correlations between the results and the propor-

tions of vocalic intervals
Table S5. Segmentation with larger corpora
Table S6. Word segmentation results in all languages for

both algorithms when over-segmented chunks are included.

© 2016 John Wiley & Sons Ltd

The rhythm of speech statistics 11

http://dx.doi.org/10.1177/0023830914551375
http://dx.doi.org/10.1016/j.cognition.2012.10.008
http://dx.doi.org/10.1016/j.cognition.2009.07.011.Learning
http://dx.doi.org/10.1016/j.cognition.2009.07.011.Learning
http://dx.doi.org/10.1006/jmla.1998.2576
http://www.ncbi.nlm.nih.gov/pubmed/10764650
http://www.ncbi.nlm.nih.gov/pubmed/10764650
http://www.ncbi.nlm.nih.gov/pubmed/10908711
http://www.ncbi.nlm.nih.gov/pubmed/10908711
http://www.ncbi.nlm.nih.gov/pubmed/10193055
http://dx.doi.org/10.1016/j.cogpsych.2004.06.001
http://dx.doi.org/10.1037/0012-1649.39.4.706
http://dx.doi.org/10.1207/s15473341lld0301_3
http://dx.doi.org/10.1121/1.3129127
http://dx.doi.org/doi: 10.1016/0749-596X(92)90037-X
http://dx.doi.org/10.1016/j.tics.2004.08.006
http://dx.doi.org/10.1016/j.tics.2004.08.006

